PAST, PRESENT AND FUTURE OF SEAFLOOR IMAGING SYSTEMS IN SAANICH INLET

Fabio C. De Leo, ONC
Benthic ecology and dynamics
Saanich Inlet Symposium
10 May 2016
PAST, PRESENT AND FUTURE OF SEAFLOOR IMAGING SYSTEMS IN SAANICH INLET

Outline:

(1) Camera systems deployed to date
(2) Scientific outcomes
(3) Future seafloor imaging projects
PAST AND CURRENT SEAFLOOR CAMERAS

DISCO (DIGITAL STILL) CAMERA – SAANICH INLET (96 M)
CMAP CYCLOPS CAMERA

Features

DISCO
- Olympus C8080 wide zoom camera (8 Mpxels, f2.4, 5Å optical zoom)
- ROS PT-25B pan and tilt (+/- 90° tilt, +/- 180° pan)
- Ikelite 200 Ws flash
- AGO subsea 44W lights (2)
- Scaling lasers (4)
- Web-enabled interface to control camera settings (image preview function)
- 70,800 images archived

CYCLOPS
- Olympus C8080 wide zoom camera (8 Mpxels, f2.4, 5Å optical zoom)
- Sidus SS109 pan & tilt unit (+/- 90° tilt, +/- 180° pan)
- Ikelite 200 Ws flash
- Deep Sea Power and Light Rite-Lite 100 W incandescent lights (3)
- Scaling lasers (red, 10 mW)
- 56,950 images archived
PAST AND CURRENT SEAFLOOR CAMERAS

FORENSIC CAMERA

Features
- HDTV video – AXIS PTZ 1346
- 18x optical zoom
- High-speed pan and tilt
- Mounted on a VENUS frame
- Connected to a SIIM module
- 4 LED lights

History
- 5 deployments
- 100,120 video files archived
PAST AND CURRENT SEAFLOOR CAMERAS

3D CAMERA (Developed by Herb Yang and Steve Sutphen, Computer Science Dept.)

Features
- Circular steel plate 8 feet in diameter, legs are 5-feet high and central post at 6’6” high
- Platform weight 1500 pounds, loaded up with cameras, projectors and PCs.
- Mounting brackets for (8 cameras, 3 projectors, and 2 PC controllers)
 - 45 degree tilt in the vertical plane
 - 1.5 m focal range
 - 18x optical zoom

Deployed
- Sept 2014
 - Bad focus calibration (recovered in May 2015)
- August 2015
 - Recalibrated and working

Schedule
- Photographs at 6 hr intervals

8 cameras
3 light projectors
2 PC control modules
PAST AND CURRENT SEAFLOOR CAMERAS

3D CAMERA

- Underwater 3D image reconstruction using accurate camera positioning and calibration
- Algorithm development for organism tracking/identification

8 cameras
2 PC control modules
PAST AND CURRENT SEAFLOOR CAMERAS
- SAANICH INLET

Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>CMAP</th>
<th>DISCO</th>
<th>FORENSIC</th>
<th>3D Cam</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Camera deployments
SCIENTIFIC OUTPUT USING SEAFLOOR IMAGING SYSTEMS

Peer-reviewed publications

Yahel et al 2008_MEPS (CMAP + ROPOS transects)
Kats et al 2009_Global Biogeochem. Cycles (CMAP+ROPOS)
Matabos et al 2011_JEMBE (CMAP)
Aguzzi et al 2011_Sensors (CMAP)
Katz et al 2012_Limnology & Oceanography (CMAP)
Matabos et al 2012_Plos One (CMAP)
Anderson and Bell 2014_Plos One (FORENSIC)
Chu et al 2015_Global Env. Change (DISCO-CMAP + ROPOS transects)

Thesis, Dissertations

Jackson Chu, Verena Tunnicliffe (advisor) – PhD, ongoing (CMAP-DISCO)
Carolia Doya, Jacopo Aguzzi (advisor) – PhD, ongoing (CMAP-DISCO)
Xida Chen, Herb Yang (advisor) – PhD, defended (now post-doc) (3D Cam)
Neda Al Sabbbadi, Herb Yang (advisor) – MSc, ongoing (3D Cam)
Saeed Hojjati, Herb Yang (advisor) – MSc, ongoing (3D Cam)

Conference papers (only recent, many more…)

Chu et al 2015, Deep-Sea Biol Meeting, Aveiro, Portugal (DISCO-CMAP + ROPOS transects)
Yau et al 2013 – IEEE, Portland, OR (3D Camera)
Chen and Yang 2014 – IEE, Columbus, OH (3D Camera)
SCIENTIFIC OUTPUT USING SEAFLOOR IMAGING SYSTEMS

ONC Peer-reviewed publications

<table>
<thead>
<tr>
<th>Year</th>
<th>Video data from Cameras</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>17%</td>
<td>83%</td>
</tr>
<tr>
<td>2013</td>
<td>16%</td>
<td>84%</td>
</tr>
<tr>
<td>2012</td>
<td>20%</td>
<td>80%</td>
</tr>
<tr>
<td>2011</td>
<td>22%</td>
<td>78%</td>
</tr>
</tbody>
</table>

11 cameras
> 200 instruments

5% Other
95% Video data from Cameras
Scientific Output

Aguzzi et al. 2011 Sensors

- Automated counts based on filtering and background correction on RGB channels
- Higher percentages of images were correctly classified and lower misclassification errors (an animal is present but not detected)

Article

Automated Image Analysis for the Detection of Benthic Crustaceans and Bacterial Mat Coverage Using the VENUS Undersea Cabled Network

Jacopo Aguzzi 1*, Corrado Costa 2*, Kathleen Robert 3, Marjolaine Matabos 4, Francesca Antonucci 2, S. Kim Juniper 3,4 and Paolo Menesatti 2
Scientific Output

Aguzzi et al. 2011 Sensors

Automated Image Analysis for the Detection of Benthic Crustaceans and Bacterial Mat Coverage Using the VENUS Undersea Cabled Network

Jacopo Aguzzi 1,*; Corrado Costa 2,*; Katieen Robert 3; Marjolaine Matabos 4; Francesca Antonucci 2; S. Kim Juniper 3,4 and Paolo Menesatti 2

--

Manual processing
Automated processing
New camera systems in development

Sediment Profiling Imaging (SPI) Camera

Researchers involved
- Martin Solan (NOC)
- Paul Snelgrove (Memorial Univ.)

Research questions
- Linkages between benthic diversity and ecosystem function at unprecedented temporal resolution:
 - Particle redistribution (bioturbation)
 - Organism-sediment interactions
 - Responses to long-term environmental change (temperature, oxygen, etc)
- Investigate the role of large (highly mobile) bioturbators. Deployments employing cage settings to control for those large mobile organisms.
New camera systems in development

Black Magic Cinema 4K Cameras

Improvements:

- Proper software driver for controlling the camera (instead of VPN connection to shore station PC)
- LED sets instead of flash (avoid synchronization issues)
- Higher image resolution
- Relay board to independently control lights and lasers
- Serial control of PAN and TILT system

Standard DSLRs – Nikon DS7200
NEW CAMERA SYSTEMS IN DEVELOPMENT

ACOUSTIC CAMERAS

ARIS dual frequency sonar

Researchers involved
- Francis Juanes, Aharon Fleury - UVIC
- Jeff Drazen, UH Manoa
- Jacopo Aguzzi/Carol Doya/Ulla Arcadya – ICM-CSIC

Research questions
- Study fish and invertebrate behavior without effects of light attraction and avoidance effects
- Generate a species ID list based on frequencies to correlate with sounds (hydrophone co-located) generated by fish and invertebrates