Skip to main content
Ocean Networks Canada

Ocean Networks Canada

Search form

Facebook iconTwitter iconLinkedIn iconYouTube iconFlickr iconInstagram icon

Menu

  • About Us
    • About Us
    • Jobs & Opportunities
    • Events & Workshops
    • Contact Us
    • Support Us
    • Annual Report 2019-2020
    • Organization
      • Leadership
      • Staff
      • Boards
      • Committees
    • Funders, Associate Members & Partners
      • Funders
      • Associate Members
      • Partners
  • Science
    • Science
    • Active Research
    • Highlights
    • Science Plan
      • Summary
      • Science Themes
    • Publications
      • General Interest
      • Academic
    • Getting Involved
      • Proposals
  • Innovation Centre
    • Innovation Centre
    • About the Innovation Centre
    • Success Stories
    • Contact Us
    • Smart Ocean™ Systems
      • Sensors and Instruments
      • Technology Demos
      • Ocean Observing Systems
      • Earthquake Early Warning
    • Partners & Networks
      • Industry Network
      • Global Partnerships
      • R&D Support
      • Students in Industry
    • Atlantic Partners
  • Learning
    • Learning
    • Learning Highlights
    • Learning Events
    • Partnerships
    • Contact Us
    • Ocean Sense
      • Community Observatories
        • Cambridge Bay
        • Campbell River
        • Kitamaat Village
        • Prince Rupert
      • Teacher Info
      • Student Info
      • Resources & Lessons
    • Get Involved
      • For Students
        • For Undergrads & Grads
      • For Educators
        • Educator Opportunities
      • For Communities
      • Ship2Shore
      • Citizen Science
        • Coastbuster
        • Digital Fishers
      • Youth Science Ambassador
    • Resources
      • Learning at Home
      • Educator Resources
      • Ocean Alive!
      • Oceanography 101
      • About the Observatories
      • Research Ideas
      • Student Reports
  • Observatories
    • Observatories
    • Arctic
    • Atlantic
    • Pacific
    • Mobile Platforms
    • Infrastructure
      • Data Facilities
      • Platforms
      • Devices & Sensors
      • Cables & Connectors
    • Expeditions
      • Wiring the Abyss
      • Expedition Logs
      • Maintenance Processes
    • Notices
      • Information for Mariners
      • Alerts
  • Data & Tools
    • Data & Tools
    • Highlights
    • Data Quality
    • Preview & Download
      • Preview & Visualize
      • Data Download Tools
      • State of the Ocean Plots
      • Ocean Report Card
    • Apps & Services
      • Mobile Apps
      • OPeNDAP Web Services
      • Related Sources
      • Earthquake Data Dashboard
    • Data Help
      • Usage Policy
      • Tutorials & Help Pages
      • Request Help
  • Sights & Sounds
    • Sights & Sounds
    • Terms of Use
    • Video
      • Live Video
      • Video Highlights
      • Video Archives
    • Images
      • Maps
    • Audio
      • Audio Highlights
      • Audio Archive
  • News
    • News
    • Stories
    • Newsletters
    • Calendar
    • Media Relations
      • Backgrounders
      • Downloads
      • In the News
      • News Releases
      • Media Contacts

About Us

You are here

  1. Home
May 23, 2012

Sediment Mix-Masters

The seafloor is, arguably, one of the most extensive habitats on the planet and it is significantly understudied. It is home to a variety of benthic organisms that spend much, if not all, of their time on the bottom sliding along or ploughing through sediment. Some organisms are deposit-feeders that ingest sediments, absorb their organic content, and excrete faecal strings or pellets; other organisms are burrowers that actively mix sediments vertically. This process by which organisms mix up sediment, is known as bioturbation, and is ecologically important because it influences nutrient recycling and other biogeochemical processes on the seafloor.

Bioturbation has traditionally been studied using time-lapse imagery or vertical tracers (natural or artificial objects on the seafloor which become buried in the sediment through bioturbation). University of Victoria Biology MSc student Katleen Robert decided to try a new approach, using video camera recordings from an Ocean Networks Canada camera at the Pod 2 site near theUpper Slope junction box, to determine which animals were mixing surface sediments and how fast they are doing it. Working with her supervisor Kim Juniper, Katleen developed a brand new methodology for this process, using imagery from a video camera deployed at 396 m depth in Barkley Canyon. In addition to the video imagery, they made use of:

1. scans from the rotary sonar installed at this location to monitor decimetre-scale sediment structures
2. acoustic Doppler current profiler (ADCP) data, to characterize bottom water currents
3. two push-core samples in order to assess sediment grain size

 

An instrument platform in Barkley Canyon with an attached ADCP used to monitor bottom water currents.

There are lights connected to the cameras, however, so Katleen had to be cautious about how much she used them as some species, such as black cod (sablefish) are attracted to the lights and may congregate in such high numbers they obscure the benthic animals, or possibly alter the natural behaviours of the organisms they were trying to observe. To avoid any negative effects from light pollution, the team limited light to 1 hour per day. Within this limit, Katleen tested three observation regimes:

1. 1 continuous hour of observation (4 January - 25 February 2010)
2. Two 30 minute periods (24 March - 9 April 2010)
3. 5 minutes every second hour (15 August - 23 October 2010)

 

The continuous one-hour observations in January and February were used to establish which organisms were present. Camera-mounted lasers, spaced 10 cm apart, and a scaling ruler on the seafloor within the field of view were used to build a perspective grid which could be overlain on the video frames to measure organism size and rates of locomotion.

An example of a perspective grid overlaid on a video frame used in this study (from Robert & Juniper, 2012).

The most commonly observed animals were rockfish, flatfishes (Dover sole and Pacific halibut), skates, fragile pink sea urchins, and an orange anemone. Of these organisms, only the flatfishes and urchins were commonly observed disturbing the sediments. By monitoring their movements, Katleen determined that sea urchins were able to completely overturn the sediments in the field of view, an area of 8.8 m2, in 153 to 213 days while the flatfish took slightly longer, overturning the same area in 227 to 294 days. These numbers taken together represent sediment surface overturning completely at rates of 26.0 to 35.1 m2/year. These numbers are consistent with other observations at deeper locations in the northeast Pacific and northeast Atlantic Oceans.

Fragile pink urchins aggregate in a trawl scar.

Although Katleen determined that individual fragile pink urchins cause little sediment mixing, these animals are known to occasionally aggregate in high numbers, in which case they could have more intensive but localized bioturbating effects. Flatfish overturn much more sediment individually than urchins. Halibut and sole tend to burrow into the surface of the sediment and leave small oval pits about 1-2 cm deep. It is thought that they may dig these pits for protection from predators or to help them capture prey.

The two most common flatfish observed by Robert & Juniper, Pacific halibut (left) and Dover sole (right, inset).

Researchers at Dalhousie University have discovered similar pits in high-resolution sonar images from this same site (Pod 2, near Upper Slope). These pits remained, and were not filled in, for approximately 6 months. Current metre measurements suggest that these pits were not formed by bottom currents which were rarely strong enough to re-suspend sediments and fill in the burrows. Instead, the researchers are now exploring the idea that these pits are made by flatfish that revisit them often and maintain the same pits so they do not become in-filled.

Robert & Juniper’s study illustrates the importance of animals in the deep sea are for mixing sediment, which can happen at surprisingly rapid rates. They suggest that long-term monitoring of bioturbation will provide important insights into the response of seafloor ecosystems to changes in primary productivity and related supplies of organic matter supply to the deep sea. This eventually will help scientists evaluate the impacts of global climate change and human disturbances on deep-sea ecosystems.

Sediment | adcp | barkley canyon | sonar | bioturbation

Printer-friendly versionPDF version

Related Stories

Expedition 2019: Highlights Story Map
Nov 14, 2019

New research shines a light on the importance of submarine canyons
Sep 14, 2018

New study quantifies natural flux of methane gas in the northeast Pacific
Sep 11, 2018

Sedimentary principles: marine geology, shrimp fisheries, and the impact of deep sea trawling
Oct 20, 2016

Deployed: the first spike for British Columbia's earthquake early warning system
Jul 27, 2016

Expedition 2016 Wrap: Bigger Footprint Enables Better Science
Jul 8, 2016

INCISE Submarine Canyon Symposium in Victoria 25 - 27 July
Feb 28, 2016

Calendar of Events

January 2021

  • « Prev  
  •   Next »
S M T W T F S
27
28
29
30
31
1
2
 
 
 
 
 
 
 
3
4
5
6
7
8
9
 
 
 
 
 
 
 
10
11
12
13
14
15
16
 
 
 
 
 
 
 
17
18
19
20
21
22
23
 
 
 
 
 
 
 
24
25
26
27
28
29
30
 
 
 
 
 
 
 
31
1
2
3
4
5
6
 
 
 
 
 
 
 

Newsletter

Sign up for our monthly e-newsletter:

 

Tweets Follow @Ocean_Networks

 

 

Highlights

  • Audio
  • Data
  • Learning
  • Science
  • Video

Reading Room

  • Active Research
  • Backgrounders
  • FAQs
  • Glossary
  • News Briefs
  • News Stories
  • Newsletters
  • Publications

Cool Stuff

  • Apps
  • Digital Fishers
  • iBooks & e-Pubs
  • Live Video
  • Maps
  • Images
  • State of the Ocean

Data & Tools

  • Apps
  • Data Plots
  • Data Search
  • Data Policy
  • Data Help
  • OPeNDAP Web Services

Opportunities

  • Calendar
  • Educator Opportunities
  • Global Partnerships
  • Industry Network
  • Jobs
  • Staff List
  • Technology Services

Sites & Instruments

  • Arctic Sites
  • Northeast Pacific Sites
  • Salish Sea Sites
  • Notice to Mariners

Follow Us

Facebook iconTwitter iconLinkedIn iconYouTube iconFlickr iconInstagram icon

Sign up for our newsletter

Feedback

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.

                              

About Us | Contact Us | Media Relations | Legal Notices

©   Ocean Networks Canada. All rights reserved.  2474 Arbutus Road, Victoria, BC, V8N 1V8 | 1.250.472.5400